Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gurka, Roi (Ed.)Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz. Can this high-frequency acuity support odour source localization? Here we answer this question by quantifying the spatial information about source separation contained in the spectral constituents of correlations. We used computational fluid dynamics simulations of multisource plumes in two-dimensional chaotic flow environments to generate temporally complex, covarying odour concentration fields. By relating the correlation of these fields to the spectral decompositions of the associated odour concentration timeseries, and making simplifying assumptions about the statistics of these decompositions, we derived analytic expressions for the Fisher information contained in the spectral components of the correlations about source separation. We computed the Fisher information for a broad range of frequencies and source separations for three different source arrangements and found that high frequencies were more informative than low frequencies when sources were close relative to the sizes of the large eddies in the flow. We observed a qualitatively similar effect in an independent set of simulations with different geometry, but not for surrogate data with a similar power spectrum to our simulations but in which all frequencies werea prioriequally informative. Our work suggests that the high-frequency acuity of olfactory systems may support high-resolution spatial localization of odour sources. We also provide a model of the distribution of the spectral components of correlations that is accurate over a broad range of frequencies and source separations. More broadly, our work establishes an approach for the quantification of the spatial information in odour concentration timeseries.more » « lessFree, publicly-accessible full text available January 10, 2026
-
Animals have evolved to rapidly detect and recognize brief and intermittent encounters with odor packages, exhibiting recognition capabilities within milliseconds. Artificial olfaction has faced challenges in achieving comparable results—existing solutions are either slow; or bulky, expensive, and power-intensive—limiting applicability in real-world scenarios for mobile robotics. Here, we introduce a miniaturized high-speed electronic nose, characterized by high-bandwidth sensor readouts, tightly controlled sensing parameters, and powerful algorithms. The system is evaluated on a high-fidelity odor delivery benchmark. We showcase successful classification of tens-of-millisecond odor pulses and demonstrate temporal pattern encoding of stimuli switching with up to 60 hertz. Those timescales are unprecedented in miniaturized low-power settings and demonstrably exceed the performance observed in mice. It is now possible to match the temporal resolution of animal olfaction in robotic systems. This will allow for addressing challenges in environmental and industrial monitoring, security, neuroscience, and beyond.more » « lessFree, publicly-accessible full text available November 8, 2025
-
Active sampling in the olfactory domain is an important aspect of mouse behaviour, and there is increasing evidence that respiration-entrained neural activity outside of the olfactory system sets an important global brain rhythm. It is therefore important to accurately measure breathing during natural behaviours. We develop a new approach to do this in freely moving animals, by implanting a telemetry-based pressure sensor into the right jugular vein, which allows for wireless monitoring of thoracic pressure. After verifying this technique against standard head-fixed respiration measurements, we combined it with EEG and EMG recording and used evolving partial coherence analysis to investigate the relationship between respiration and brain activity across a range of experiments in which the mice could move freely. During voluntary exploration of odours and objects, we found that the association between respiration and cortical delta and theta rhythms decreased, while the association between respiration and cortical alpha rhythm increased. During sleep, however, the presentation of an odour was able to cause a transient increase in sniffing without changing dominant sleep rhythms (delta and theta) in the cortex. Our data align with the emerging idea that the respiration rhythm could act as a synchronising scaffold for specific brain rhythms during wakefulness and exploration, but suggest that respiratory changes are less able to impact brain activity during sleep. Combining wireless respiration monitoring with different types of brain recording across a variety of behaviours will further increase our understanding of the important links between active sampling, passive respiration, and neural activity.more » « less
-
Kiebel, Stefan (Ed.)Sensory processing is hard because the variables of interest are encoded in spike trains in a relatively complex way. A major goal in studies of sensory processing is to understand how the brain extracts those variables. Here we revisit a common encoding model in which variables are encoded linearly. Although there are typically more variables than neurons, this problem is still solvable because only a small number of variables appear at any one time (sparse prior). However, previous solutions require all-to-all connectivity, inconsistent with the sparse connectivity seen in the brain. Here we propose an algorithm that provably reaches the MAP (maximuma posteriori) inference solution, but does so using sparse connectivity. Our algorithm is inspired by the circuit of the mouse olfactory bulb, but our approach is general enough to apply to other modalities. In addition, it should be possible to extend it to nonlinear encoding models.more » « less
-
null (Ed.)Abstract The sense of smell is an essential modality for many species, in particular nocturnal and crepuscular mammals, to gather information about their environment. Olfactory cues provide information over a large range of distances, allowing behaviours ranging from simple detection and recognition of objects, to tracking trails and navigating using odour plumes from afar. In this review, we discuss the features of the natural olfactory environment and provide a brief overview of how odour information can be sampled and might be represented and processed by the mammalian olfactory system. Finally, we discuss recent behavioural approaches that address how mammals extract spatial information from the environment in three different contexts: odour trail tracking, odour plume tracking and, more general, olfactory-guided navigation. Recent technological developments have seen the spatiotemporal aspect of mammalian olfaction gain significant attention, and we discuss both the promising aspects of rapidly developing paradigms and stimulus control technologies as well as their limitations. We conclude that, while still in its beginnings, research on the odour environment offers an entry point into understanding the mechanisms how mammals extract information about space.more » « less
An official website of the United States government
